

Cambridge International AS & A Level

MATHEMATICS (9709) P3

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Chapter 8

Differential equations

282. 9709_s20_qp_31 Q: 8

A c	ertain curve is such that its gradient at a point (x, y) is proportional to $\frac{y}{x\sqrt{x}}$. The curve passes high the points with coordinates $(1, 1)$ and $(4, e)$.
(a)	By setting up and solving a differential equation, find the equation of the curve, expressing y in terms of x . [8]

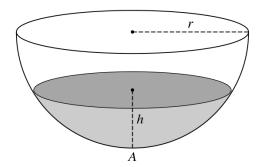
	.0
(b)	Describe what happens to y as x tends to infinity. [1]

 $283.\ 9709_s20_qp_32\ Q\hbox{:}\ 7$

The	variables	r and v	caticfy	the	differential	equation
11116	variables	λ and ν	sausiy	une	umeremuai	equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y-1}{(x+1)(x+3)}.$$

It is given that y = 2 when x = 0. Solve the differential equation, obtaining an expression for y in terms of x. [9]



	•••
	•••
	•••
	•••
	•••
	•••
	•••
A []	•••
	•••
	•••
	•••

284. 9709_s20_qp_33 Q: 10

A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is A and the radius is r, as shown in the diagram. The depth of water at time t is h. At time t = 0 the tank is full and the depth of the water is r. At this instant a tap at A is opened and water begins to flow out at a rate proportional to \sqrt{h} . The tank becomes empty at time t = 14.

The volume of water in the tank is V when the depth is h. It is given that $V = \frac{1}{3}\pi(3rh^2 - h^3)$.

(a) Show that h and t satisfy a differential equation of the form

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{B}{2rh^{\frac{1}{2}} - h^{\frac{3}{2}}},$$

where B is a positive constant.	[4]
100	
••	

	•••••
	•••••
	•••••
.0	
	•••••
	•••••
	•••••
	•••••
	•••••
A Y	
	•••••

TTI 1: 4	/ \ C	1		4. 6	41 11 CC	4. 1
The coordinates	(x, y) of a	ı generai	point of a	curve sanstv	The differe	ential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$$

for x > 0. It is given that y = 1 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	[6]
	2
	<u> </u>
	<u> </u>
Cy Cy	
100	
	••••••

286. $9709_{2} = 20_{2} = 32$ Q: 7

The variables x and t satisfy the differential equation

$$e^{3t} \frac{\mathrm{d}x}{\mathrm{d}t} = \cos^2 2x,$$

for $t \ge 0$. It is given that x = 0 when t = 0.

	•••••
	•••••
	<u></u>
	0
A ()	
	•••••
	•••••
/ O	•••••
	•••••
	•••••
	•••••

	•••••
	•••••
	•••••

b)	State what happens to the value of x when t tends to infinity. [1]
	••

287. 9709_m19_qp_32 Q: 6

The veriables	v and i	o coticfy	the differential	aquation
The variables.	x ana i	v sausiv	the differential	eduation

<u>dy</u>	=	kv^3e^{-x}	
dr	_	ky e "	,

where k is a constant. It is given that $y = 1$ when $x = 0$, and that $y = \sqrt{e}$ when $x = 1$. Solve the differential equation, obtaining an expression for y in terms of x .				
~***				
★ X				

G
**

288. $9709_s19_qp_31~Q: 5$

(i)	Differentiate $\frac{1}{\sin^2 \theta}$ with respect to θ .	[2]
		<u> </u>
(ii)	The variables x and θ satisfy the differential equation	
	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$	
	for $0 < \theta < \frac{1}{2}\pi$ and $x > 0$. It is given that $x = 4$ when $\theta = \frac{1}{6}\pi$. Solve the obtaining an expression for x in terms of θ .	differential equation, [6]

.(//
20

289. 9709_s19_qp_32 Q: 7

Solve the diffe	erential equation, ol	btaining v in teri	ns of x .		
	1				
	•••••				
					7
					
				.0	
••••••		••••••••••	•		
•••••					
•••••					
			<u> </u>		
			<i>,</i>		
		20			
•••••		O	•••••		· • • • • • • • • • • • • • • • • • • •
		<u>A</u>			
44					
	•				

	<u> </u>
	39
(ii)	Explain why x can only take values that are less than 1. [1]

290. 9709_s19_qp_33 Q: 5

TDI .	1.1	1	41 11:00 41	1
The vari	ables x an	d v satistv	the differentia	I equation

(x +	$1)y\frac{dy}{dx}$	$=y^2$	+	5.
	(IX			

It is given that $y = 2$ when $x = 0$. Solve the differential equation obtaining an expression for y^2 in terms of x .
<u> </u>

	• • • • •
	••••
	• • • • •
	•••••
	••••
_	
	• • • • •
	• • • • •
	••••

 $291.\ 9709_w19_qp_31\ Q:\ 4$

The number of insects in a population t weeks after the start of observations is denoted by N. The population is decreasing at a rate proportional to $Ne^{-0.02t}$. The variables N and t are treated as continuous, and it is given that when t = 0, N = 1000 and $\frac{\mathrm{d}N}{\mathrm{d}t} = -10$.

(i)	Show that N and t satisfy the differential equation	
	$\frac{\mathrm{d}N}{\mathrm{d}t} = -0.01\mathrm{e}^{-0.02t}N.$	[1]
	.0.	
	10	•••••
		••••
		••••
		••••
(11)	Solve the differential equation and find the value of t when $N = 800$.	[6]
		••••
		••••
	**	
		•••••
		••••
		••••
		••••

	√
	20
(iii)	State what happens to the value of N as t becomes large. [1]

292. 9709_w19_qp_32 Q: 6

		_		-		
The variables:	v ond	Δ	coticfy	tha	differential	aguation
The variables.	ı anu	o	Sausiv	uie	umetemai	eduation

$\sin \frac{1}{2}\theta$	$\mathrm{d}x$		<i>(</i> .	2)		1 0
$\sin \frac{1}{2}\theta$	$\overline{d\theta}$	=	(x +	2)	cos	$\frac{1}{2}\theta$

for $0 < \theta < \pi$. It is given that $x = 1$ when $\theta = \frac{1}{3}\pi$. expression for x in terms of $\cos \theta$.	Solve the differential equation and obtain an [8]
-20	

-0
•

 $293.\ 9709_w19_qp_32\ Q:\ 10$

) Find the position vector of the point of intersection of l and p .	[3
	X
	()
	<i></i>
Calculate the acute angle between $\it l$ and $\it p$.]
) Calculate the acute angle between $\it l$ and $\it p$.	[:
Calculate the acute angle between $\it l$ and $\it p$.	[:
) Calculate the acute angle between l and p .	[:
Calculate the acute angle between <i>l</i> and <i>p</i> .	[:
Calculate the acute angle between <i>l</i> and <i>p</i> .	[:
Calculate the acute angle between <i>l</i> and <i>p</i> .	[:
Calculate the acute angle between <i>l</i> and <i>p</i> .	[:

The line *l* has equation $\mathbf{r} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$. The plane *p* has equation 2x + y - 3z = 5.

giving your	ane q is perpearanswer in the	form $ax + b$	y + cz = d.				
•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
	•••••		•••••		•••••		
						AO	
					•		
	••••						
					VO		
				-	7		
•••••	•••••		•••••			•••••	•••••
				0			
•••••	•••••				•••••	•••••	••••••
•		_	50				
••••					• • • • • • • • • • • • • • • • • • • •	•••••	
						•••••	
			••••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
••		7					
		•••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
$\mathcal{O}_{\mathbf{r}}$
10)
**

 $294.\ 9709_w19_qp_33\ Q:\ 9$

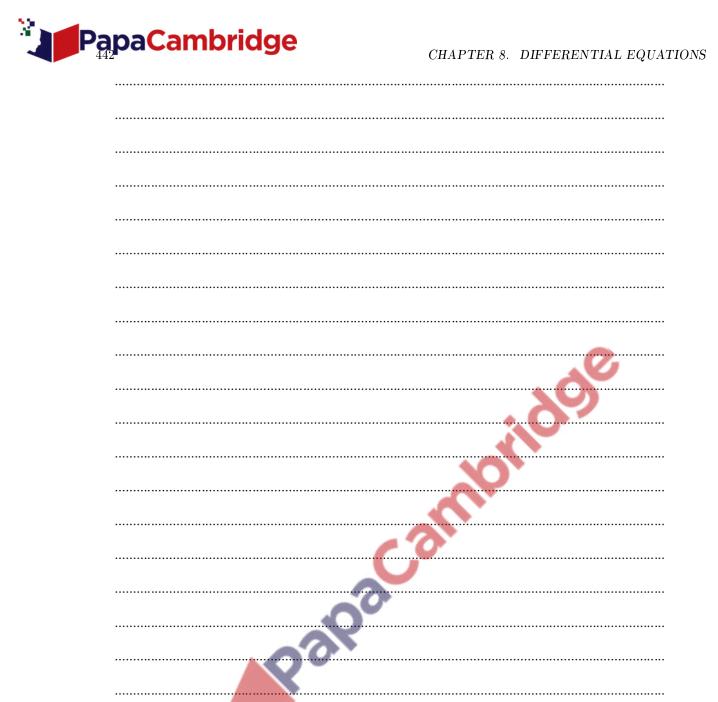
The variables x and t satisfy the differential equation 5	$5\frac{\mathrm{d}x}{\mathrm{d}t} = (20 - x)(40 - x).$	It is given that $x = 10$
when $t = 0$.	ai	

(i)	Using partial fractions, solve the differential equation, obtaining an expression for x in terms of t . [9]

CHAPTER 8. DIFFERENTIAL EQUATIONS

::/	State what happens to the value of x when t becomes large. [1]
11)	•••

295. 9709_m18_qp_32 Q: 6


The variables x and θ satisfy the differential equation

$$x\cos^2\theta\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\tan\theta + 1,$$

for $0 \le \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 1 when $\theta = \frac{1}{4}\pi$.

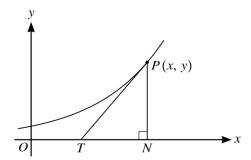
Show that $\frac{d}{d\theta}(\tan^2 \theta) = \frac{2 \tan \theta}{\cos^2 \theta}$.	[1]
	100
Solve the differential equation and calculate correct to 3 significant figures.	the value of x when $\theta = \frac{1}{3}\pi$, giving your answe
100	

In a certain chemical reaction the amount, x grams, of a substance is decreasing. The differential equation relating x and t, the time in seconds since the reaction started, is

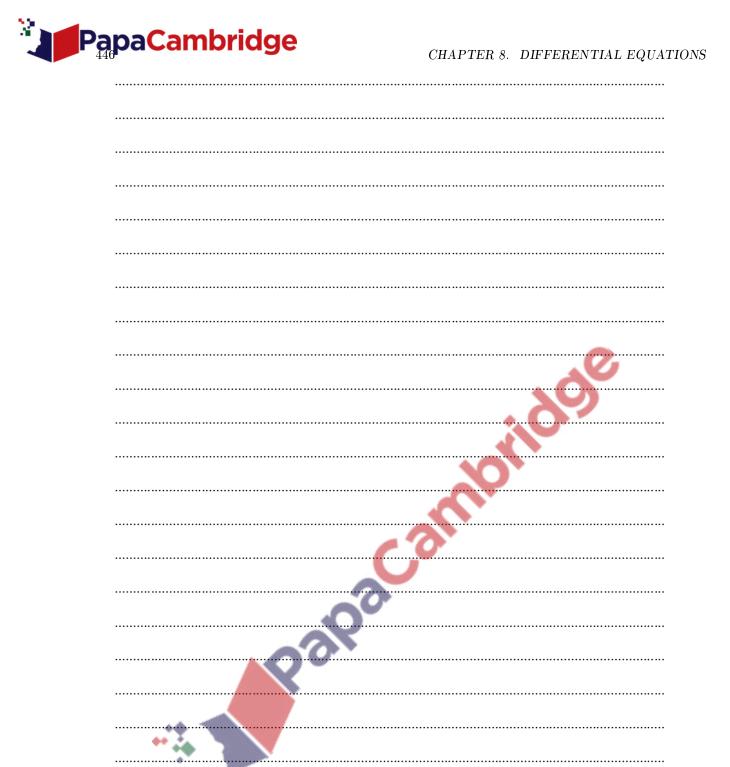
$$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx\sqrt{t},$$

where k is a positive constant. It is given that x = 100 at the start of the reaction.

Solve the differential equation, obtaining a relation between x , t and k .	[5
	<u></u>
-70	
**	



•••••				
•••••			••••••	
•••••			•••••	••••••
				. 0
•••••			••••••	
			4	
		4		
•••••				
				
•••••			•••••	
		~		
•••••	100		•••••	••••••
40				
44				


297. 9709_s18_qp_32 Q: 3

In the diagram, the tangent to a curve at the point P with coordinates (x, y) meets the x-axis at T. The point N is the foot of the perpendicular from P to the x-axis. The curve is such that, for all values of x, the gradient of the curve is positive and TN = 2.

(i)	Show that the differential equation satisfied by x and y is $\frac{dy}{dx} = \frac{1}{2}y$.	1
		•••
		•••
The	point with coordinates (4, 3) lies on the curve.	
	Solve the differential equation to obtain the equation of the curve, expressing y in terms of x .	5
	Solve the differential equation to obtain the equation of the curve, expressing y in terms of x .	5
	Solve the differential equation to obtain the equation of the curve, expressing y in terms of x .	5
	Solve the differential equation to obtain the equation of the curve, expressing y in terms of x .	5
	Solve the differential equation to obtain the equation of the curve, expressing y in terms of x .	
	Solve the differential equation to obtain the equation of the curve, expressing y in terms of x .	5

298. 9709_s18_qp_33 Q: 6

(i)	Express $\frac{1}{4-y^2}$ in partial fractions.	[2]
		0
		少
(ii)	The variables x and y satisfy the differential equation	
	$x\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - y^2,$	
	and $y = 1$ when $x = 1$. Solve the differential equation, obtaining an expression f	for y in terms of x .
		[6]
	•	
		••••••
	2018 9709/33/M/J/18	

CHAPTER 8. DIFFERENTIAL EQUATIONS

40

 $299.\ 9709_w18_qp_31\ \ Q:\ 5$

The coordinates (x, y) of a general point on a curve satisfies	tisfy the differential equation
$x\frac{\mathrm{d}y}{\mathrm{d}x} = (2 - x^2)y$	y.

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (2 - x^2)y.$$

The curve passes through the point $(1, 1)$. Find the equation of the curve, obtaining an expression y in terms of x .	on for [7]
	•••••
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

CHAPTER 8. DIFFERENTIAL EQUATIONS

 $300.\ 9709_w18_qp_32\ Q:\ 6$

A certain curve is such that its gradient at a general point with coordinates (x, y) is proportional to v^2
$\frac{y^2}{x}$. The curve passes through the points with coordinates (1, 1) and (e, 2). By setting up and solving
a differential equation, find the equation of the curve, expressing y in terms of x . [8]
A'O'

CHAPTER 8. DIFFERENTIAL EQUATIONS

•••

 $301.\ 9709_s17_qp_31\ \ Q:\ 9$

Express $\frac{1}{x(2x+3)}$ in partial fractions.	2]
	••
40"	
70	••
The variables x and y satisfy the differential equation	
$x(2x+3)\frac{\mathrm{d}y}{\mathrm{d}x}=y,$	
and it is given that $y = 1$ when $x = 1$. Solve the differential equation and calculate the value of when $x = 9$, giving your answer correct to 3 significant figures.	
**	
	••

 $302.\ 9709_s17_qp_32\ Q:\ 5$

In a certain chemical process a substance A reacts with and reduces a substance B .	The masses of A
and B at time t after the start of the process are x and y respectively. It is given that	$\frac{\mathrm{d}y}{\mathrm{d}t} = -0.2xy$ and
$x = \frac{10}{(1+t)^2}$. At the beginning of the process $y = 100$.	

	A ()	

ii)	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large.	ie 2]
ii)	Find the exact value approached by the mass of B as t becomes large. State what happens to th mass of A as t becomes large.	ne 2]
ii)	Find the exact value approached by the mass of B as t becomes large. State what happens to th mass of A as t becomes large.	ne 2]
ii)	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2	ne 2]
ii)	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large.	
ii)	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2	
ii)	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2	
ii)	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2	
ii)	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2	
ii)	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2	

304. 9709_w17_qp_31 Q: 6

	The variables x and	d v satisfy	the differential	equation
--	---------------------	-------------	------------------	----------

$\frac{\mathrm{d}y}{\mathrm{d}x}$	$= 4\cos^2 y \tan x,$
dx	•

for $0 \le x < \frac{1}{2}\pi$, and $x = 0$ when $y = \frac{1}{4}\pi$. Solve this differential equation and find the value of x when $y = \frac{1}{3}\pi$.
<u></u>
4.0
20

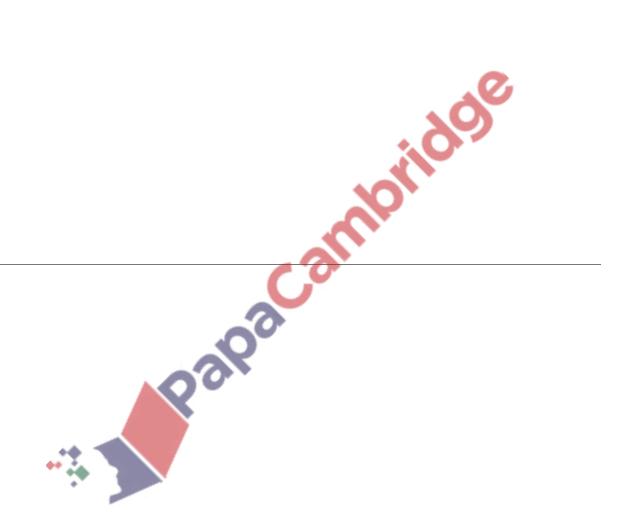
305. 9709_w17_qp_32 Q: 5

The week ables		. aatiafr	the differential	aanatian
The variables	x and y	v sansiv	ine differential	eananon

$(x+1)\frac{\mathrm{d}y}{\mathrm{d}x} = y(x+2)$,
---	---

and it is given that $y = 2$ when $x = 1$. Solve the differential equation and obtain an expression for y terms of x .	in 7]
	•••
	•••
	•••
	•••
	•••
	•••
	,
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	,

•• *

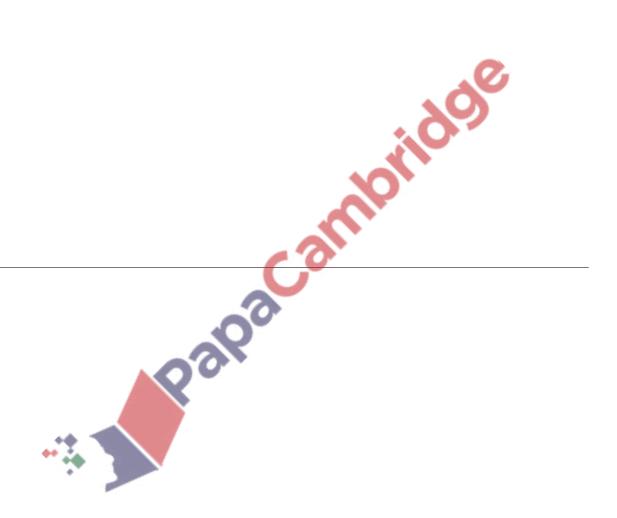

 $306.\ 9709_m16_qp_32\ Q{:}\ 7$

The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^{x+y},$$

and it is given that y = 0 when x = 0.

- (i) Solve the differential equation and obtain an expression for y in terms of x. [7]
- (ii) Explain briefly why x can only take values less than 1. [1]

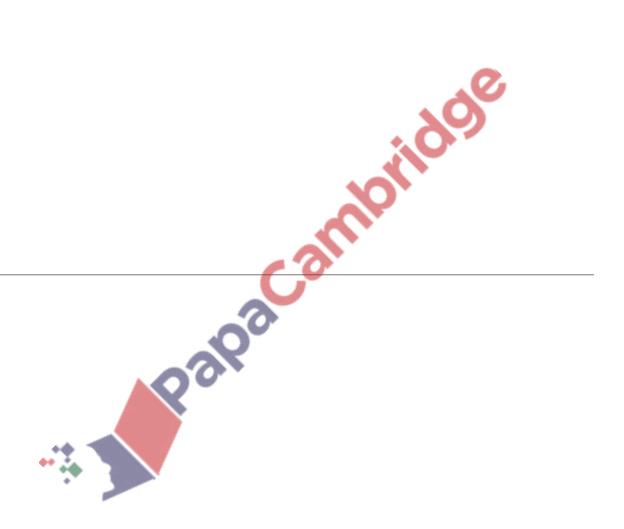


 $307.\ 9709_s16_qp_31\ \ Q:\ 4$

The variables x and y satisfy the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = y(1 - 2x^2),$$

and it is given that y = 2 when x = 1. Solve the differential equation and obtain an expression for y in terms of x in a form not involving logarithms. [6]

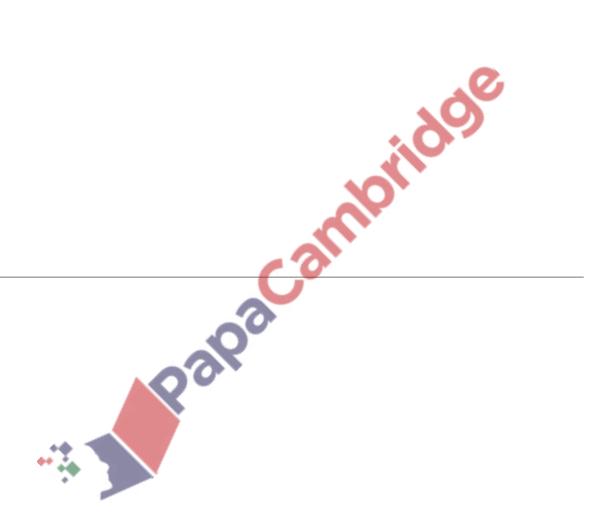

 $308.\ 9709_s16_qp_32\ \ Q:\ 6$

The variables x and θ satisfy the differential equation

$$(3 + \cos 2\theta) \frac{\mathrm{d}x}{\mathrm{d}\theta} = x \sin 2\theta,$$

and it is given that x = 3 when $\theta = \frac{1}{4}\pi$.

- (i) Solve the differential equation and obtain an expression for x in terms of θ . [7]
- (ii) State the least value taken by x. [1]

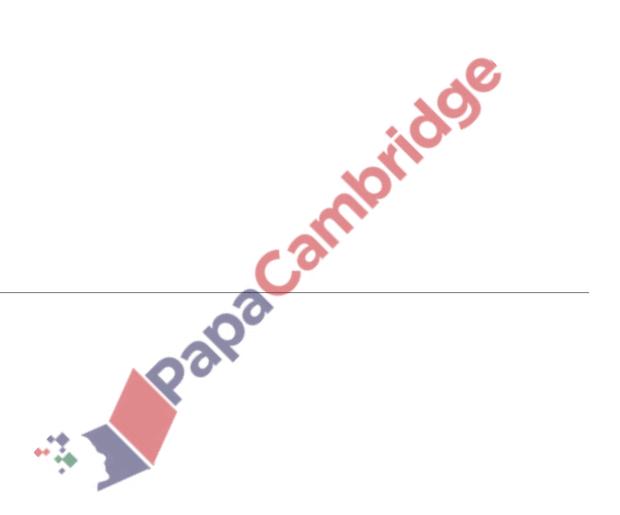


309. 9709_s16_qp_33 Q: 5

The variables x and y satisfy the differential equation

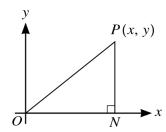
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-2y} \tan^2 x,$$

for $0 \le x < \frac{1}{2}\pi$, and it is given that y = 0 when x = 0. Solve the differential equation and calculate the value of y when $x = \frac{1}{4}\pi$.



310. 9709_w16_qp_31 Q: 10

A large field of area 4 km^2 is becoming infected with a soil disease. At time t years the area infected is $x \text{ km}^2$ and the rate of growth of the infected area is given by the differential equation $\frac{dx}{dt} = kx(4-x)$, where k is a positive constant. It is given that when t = 0, x = 0.4 and that when t = 2, x = 2.


- (i) Solve the differential equation and show that $k = \frac{1}{4} \ln 3$. [9]
- (ii) Find the value of t when 90% of the area of the field is infected. [2]

311. 9709_w16_qp_33 Q: 5

The diagram shows a variable point P with coordinates (x, y) and the point N which is the foot of the perpendicular from P to the x-axis. P moves on a curve such that, for all $x \ge 0$, the gradient of the curve is equal in value to the area of the triangle *OPN*, where *O* is the origin.

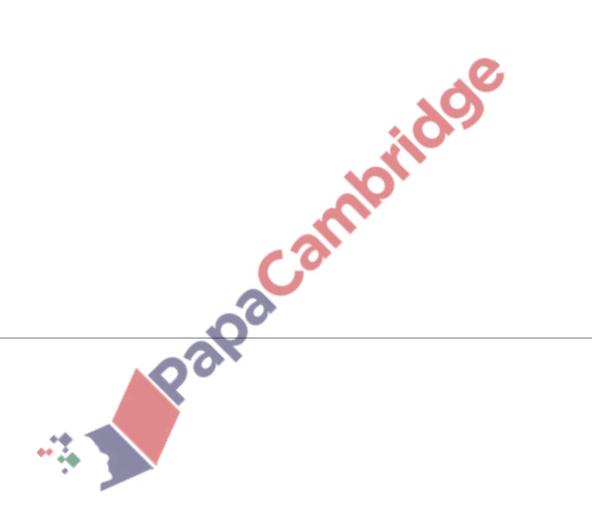
(i) State a differential equation satisfied by x and y. [1]

The point with coordinates (0, 2) lies on the curve.

Ralpa (ii) Solve the differential equation to obtain the equation of the curve, expressing y in terms of x.

[5]

(iii) Sketch the curve. [1]


 $312.\ 9709_s15_qp_31\ Q{:}\ 7$

Given that y = 1 when x = 0, solve the differential equation

$$\frac{dy}{dx} = 4x(3y^2 + 10y + 3),$$

obtaining an expression for y in terms of x.

[9]

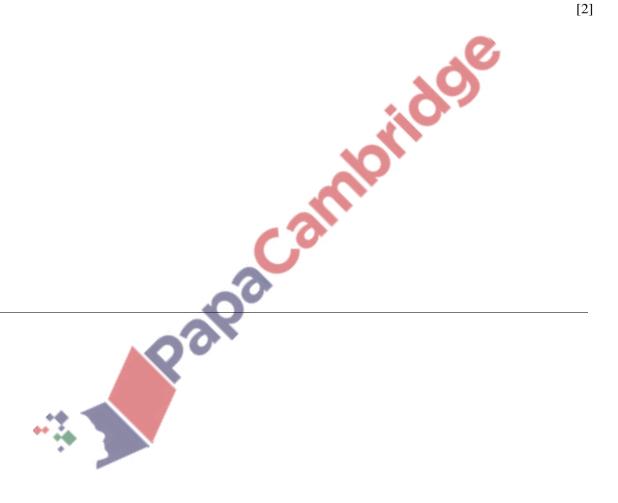
$$313.\ 9709_s15_qp_32\ Q:\ 9$$

The number of organisms in a population at time t is denoted by x. Treating x as a continuous variable, the differential equation satisfied by x and t is

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x\mathrm{e}^{-t}}{k + \mathrm{e}^{-t}} \,,$$

where k is a positive constant.

- (i) Given that x = 10 when t = 0, solve the differential equation, obtaining a relation between x, k and t.
- (ii) Given also that x = 20 when t = 1, show that $k = 1 \frac{2}{e}$. [2]
- (iii) Show that the number of organisms never reaches 48, however large t becomes. [2]

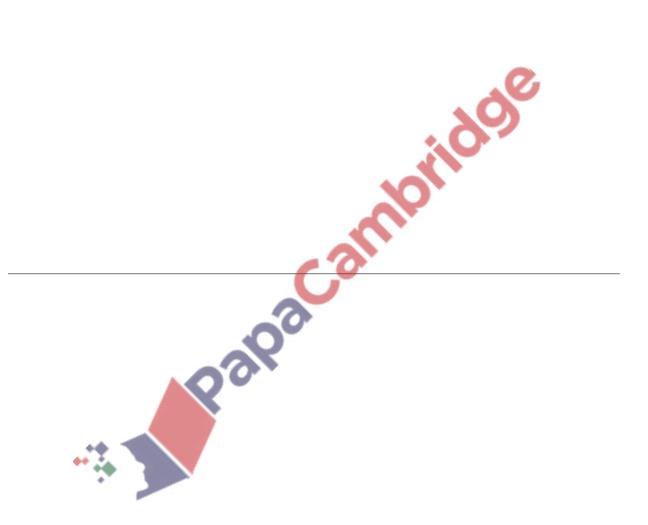

 $314.\ 9709_s15_qp_33\ Q{:}\ 7$

The number of micro-organisms in a population at time t is denoted by M. At any time the variation in M is assumed to satisfy the differential equation

$$\frac{\mathrm{d}M}{\mathrm{d}t} = k(\sqrt{M})\cos(0.02t),$$

where k is a constant and M is taken to be a continuous variable. It is given that when t = 0, M = 100.

- (i) Solve the differential equation, obtaining a relation between M, k and t. [5]
- (ii) Given also that M = 196 when t = 50, find the value of k. [2]
- (iii) Obtain an expression for M in terms of t and find the least possible number of micro-organisms.

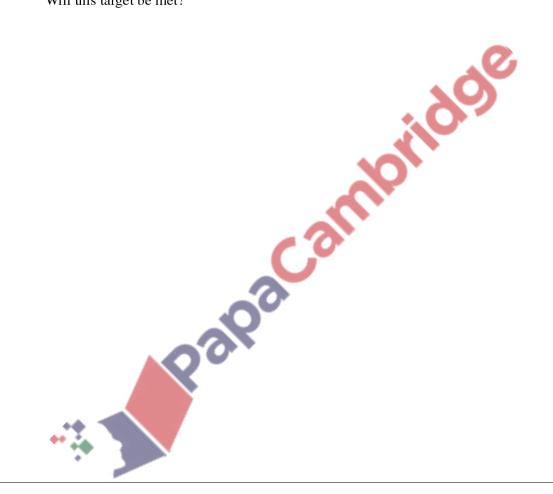


 $315.\ 9709_w15_qp_31\ Q:\ 8$

The variables x and θ satisfy the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = (x+2)\sin^2 2\theta,$$

and it is given that x = 0 when $\theta = 0$. Solve the differential equation and calculate the value of x when $\theta = \frac{1}{4}\pi$, giving your answer correct to 3 significant figures. [9]



316.9709 w15 qp 33 Q: 10

Naturalists are managing a wildlife reserve to increase the number of plants of a rare species. The number of plants at time t years is denoted by N, where N is treated as a continuous variable.

- (i) It is given that the rate of increase of N with respect to t is proportional to (N-150). Write down a differential equation relating N, t and a constant of proportionality. [1]
- (ii) Initially, when t = 0, the number of plants was 650. It was noted that, at a time when there were 900 plants, the number of plants was increasing at a rate of 60 per year. Express N in terms of t.
- (iii) The naturalists had a target of increasing the number of plants from 650 to 2000 within 15 years. Will this target be met? [2]

