Cambridge International AS & A Level ## MATHEMATICS (9709) P3 TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS Chapter 8 ## Differential equations 282. 9709_s20_qp_31 Q: 8 | A c | ertain curve is such that its gradient at a point (x, y) is proportional to $\frac{y}{x\sqrt{x}}$. The curve passes high the points with coordinates $(1, 1)$ and $(4, e)$. | |-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | (a) | By setting up and solving a differential equation, find the equation of the curve, expressing y in terms of x . [8] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | .0 | |------------|------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | (b) | Describe what happens to y as x tends to infinity. [1] | | | | | | | | | | | | | $283.\ 9709_s20_qp_32\ Q\hbox{:}\ 7$ | The | variables | r and v | caticfy | the | differential | equation | |-------|-----------|---------------------|---------|-----|--------------|----------| | 11116 | variables | λ and ν | sausiy | une | umeremuai | equation | $$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y-1}{(x+1)(x+3)}.$$ It is given that y = 2 when x = 0. Solve the differential equation, obtaining an expression for y in terms of x. [9] | | ••• | |-------|-----| | | | | | | | | ••• | | | | | | | | | ••• | | | | | | | | | ••• | | | | | | | | | ••• | | | | | | | | | ••• | | | | | | | | | ••• | | | | | | | | A [] | ••• | | | | | | | | | ••• | | | | | | | | | ••• | | | | | | | | | | | | | | | | | | ••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 284. 9709_s20_qp_33 Q: 10 A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is A and the radius is r, as shown in the diagram. The depth of water at time t is h. At time t = 0 the tank is full and the depth of the water is r. At this instant a tap at A is opened and water begins to flow out at a rate proportional to \sqrt{h} . The tank becomes empty at time t = 14. The volume of water in the tank is V when the depth is h. It is given that $V = \frac{1}{3}\pi(3rh^2 - h^3)$. (a) Show that h and t satisfy a differential equation of the form $$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{B}{2rh^{\frac{1}{2}} - h^{\frac{3}{2}}},$$ | where B is a positive constant. | [4] | |-----------------------------------|-----| | | | | | | | | | | | | | | | | 100 | | | | | | | | | •• | | | | | | | | | | | | | | | | | | | | | | ••••• | |-----|-------| | | | | | | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | .0 | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | | ••••• | | A Y | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | TTI 1: 4 | / \ C | 1 | | 4. 6 | 41 11 CC | 4. 1 | |-----------------|-------------|-----------|------------|--------------|-------------|-----------------| | The coordinates | (x, y) of a | ı generai | point of a | curve sanstv | The differe | ential equation | $$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$$ for x > 0. It is given that y = 1 when x = 1. | Solve the differential equation, obtaining an expression for y in terms of x . | [6] | |------------------------------------------------------------------------------------|----------| | | | | | | | | | | | 2 | | | <u> </u> | | | <u> </u> | | | | | | | | | | | | | | Cy Cy | | | | | | | | | 100 | | | | •••••• | | | | | | | | | | | | | | | | | | | | | | | | | 286. $9709_{2} = 20_{2} = 32$ Q: 7 The variables x and t satisfy the differential equation $$e^{3t} \frac{\mathrm{d}x}{\mathrm{d}t} = \cos^2 2x,$$ for $t \ge 0$. It is given that x = 0 when t = 0. | | ••••• | |-------------|---------| | | | | | ••••• | | | | | | | | | <u></u> | | | 0 | | A () | | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | / O | ••••• | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | ••••• | | | | | *** | | | | ••••• | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | b) | State what happens to the value of x when t tends to infinity. [1] | |------------|------------------------------------------------------------------------| | | | | | •• | | | | | | | | | | | | | | | | 287. 9709_m19_qp_32 Q: 6 | The veriables | v and i | o coticfy | the differential | aquation | |----------------|---------|-----------|------------------|----------| | The variables. | x ana i | v sausiv | the differential | eduation | | <u>dy</u> | = | kv^3e^{-x} | | |-----------|---|--------------|---| | dr | _ | ky e " | , | | where k is a constant. It is given that $y = 1$ when $x = 0$, and that $y = \sqrt{e}$ when $x = 1$. Solve the differential equation, obtaining an expression for y in terms of x . | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ~*** | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ★ X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | G | |----| | | | | | | | | | ** | | | | | | | | | | | 288. $9709_s19_qp_31~Q: 5$ | (i) | Differentiate $\frac{1}{\sin^2 \theta}$ with respect to θ . | [2] | |---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------| | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | (ii) | The variables x and θ satisfy the differential equation | | | | $x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$ | | | | for $0 < \theta < \frac{1}{2}\pi$ and $x > 0$. It is given that $x = 4$ when $\theta = \frac{1}{6}\pi$. Solve the obtaining an expression for x in terms of θ . | differential equation, [6] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | .(// | |------| | | | | | | | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 289. 9709_s19_qp_32 Q: 7 | Solve the diffe | erential equation, ol | btaining v in teri | ns of x . | | | |-----------------|-----------------------|--------------------|-------------|----|-----------------------------------------| | | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | .0 | | | •••••• | | •••••••••• | • | | | | ••••• | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | <u> </u> | | | | | | | <i>,</i> | | | | | | 20 | | | | | ••••• | | O | ••••• | | · • • • • • • • • • • • • • • • • • • • | | | | | | | | | | | <u>A</u> | | | | | | | | | | | | 44 | | | | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | |------|----------------------------------------------------------------| | | 39 | | | | | | | | | | | | | | | | | (ii) | Explain why x can only take values that are less than 1. [1] | | | | | | | | | | | | | | | | | | | | | | | | | | | | 290. 9709_s19_qp_33 Q: 5 | TDI . | 1.1 | 1 | 41 11:00 41 | 1 | |----------|------------|-------------|-----------------|------------| | The vari | ables x an | d v satistv | the differentia | I equation | | (x + | $1)y\frac{dy}{dx}$ | $=y^2$ | + | 5. | |------|--------------------|--------|---|----| | | (IX | | | | | It is given that $y = 2$ when $x = 0$. Solve the differential equation obtaining an expression for y^2 in terms of x . | |-----------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | | | | • • • • • | |---|-----------| | | | | | | | | | | | •••• | | | | | | | | | | | | | | | | | | | | | • • • • • | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | •••• | | | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | • • • • • | | | | | | | | | | | | • • • • • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | •••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $291.\ 9709_w19_qp_31\ Q:\ 4$ The number of insects in a population t weeks after the start of observations is denoted by N. The population is decreasing at a rate proportional to $Ne^{-0.02t}$. The variables N and t are treated as continuous, and it is given that when t = 0, N = 1000 and $\frac{\mathrm{d}N}{\mathrm{d}t} = -10$. | (i) | Show that N and t satisfy the differential equation | | |------|----------------------------------------------------------------------------|-------| | | $\frac{\mathrm{d}N}{\mathrm{d}t} = -0.01\mathrm{e}^{-0.02t}N.$ | [1] | | | | | | | | | | | | | | | .0. | | | | 10 | ••••• | | | | •••• | | | | •••• | | | | •••• | | | | | | | | | | (11) | Solve the differential equation and find the value of t when $N = 800$. | [6] | | | | •••• | | | | •••• | | | | | | | | | | | | | | | ** | | | | | ••••• | | | | •••• | | | | •••• | | | | •••• | | | | | | | | | | | | | | | √ | |-------|------------------------------------------------------------------| | | 20 | | | | | | | | | | | | | | | | | | | | | | | | | | (iii) | State what happens to the value of N as t becomes large. [1] | | | | | | | | | | | | | | | | | | | | | | 292. 9709_w19_qp_32 Q: 6 | | | _ | | - | | | |----------------|-------|---|---------|-----|--------------|----------| | The variables: | v ond | Δ | coticfy | tha | differential | aguation | | The variables. | ı anu | o | Sausiv | uie | umetemai | eduation | | $\sin \frac{1}{2}\theta$ | $\mathrm{d}x$ | | <i>(</i> . | 2) | | 1 0 | |--------------------------|----------------------|---|------------|----|-----|---------------------| | $\sin \frac{1}{2}\theta$ | $\overline{d\theta}$ | = | (x + | 2) | cos | $\frac{1}{2}\theta$ | | for $0 < \theta < \pi$. It is given that $x = 1$ when $\theta = \frac{1}{3}\pi$. expression for x in terms of $\cos \theta$. | Solve the differential equation and obtain an [8] | |-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | -20 | | | | | | | | | | | | *** | | | | | | | | | | | | | | | | | | | | | | | | -0 | |-----| | | | | | | | | | | | | | | | | | • | | *** | | | | | | | | | | | | | | | | | | | $293.\ 9709_w19_qp_32\ Q:\ 10$ |) Find the position vector of the point of intersection of l and p . | [3 | |--------------------------------------------------------------------------|------------| | | | | | | | | | | | | | | | | | | | | X | | | () | | | <i></i> | | | | | | | | Calculate the acute angle between $\it l$ and $\it p$. |] | |) Calculate the acute angle between $\it l$ and $\it p$. | [: | | Calculate the acute angle between $\it l$ and $\it p$. | [: | |) Calculate the acute angle between l and p . | [: | | Calculate the acute angle between <i>l</i> and <i>p</i> . | [: | | Calculate the acute angle between <i>l</i> and <i>p</i> . | [: | | Calculate the acute angle between <i>l</i> and <i>p</i> . | [: | | Calculate the acute angle between <i>l</i> and <i>p</i> . | [: | | | | | | | | | | | | | | | | The line *l* has equation $\mathbf{r} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$. The plane *p* has equation 2x + y - 3z = 5. | giving your | ane q is perpearanswer in the | form $ax + b$ | y + cz = d. | | | | | |-------------|---------------------------------|---------------|-------------|-----------------------------------------|-----------------------------------------|-----------|--------| | | | | | | | | | | ••••• | ••••• | | ••••• | • • • • • • • • • • • • • • • • • • • • | ••••• | ••••• | | | | | | | | | | | | ••••• | | | ••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | ••••• | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | ••••• | | ••••• | | • • • • • • • • • • • • • • • • • • • • | ••••• | ••••• | | | | | | | | | | | ••••• | ••••• | | ••••• | • • • • • • • • • • • • • • • • • • • • | ••••• | ••••• | | | | | | | | | | | | | ••••• | | ••••• | | ••••• | | | | | | | | | | AO | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | •••• | | | | | | | | | | | | | VO | | | | | | | | | | | | | | | | | - | 7 | | | | ••••• | ••••• | | ••••• | | | ••••• | ••••• | | | | | | 0 | | | | | ••••• | ••••• | | | | ••••• | ••••• | •••••• | | | | | | | | | | | • | | _ | 50 | | | | | | •••• | | | | | • • • • • • • • • • • • • • • • • • • • | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | •••••• | | • • • • • • • • • • • • • • • • • • • • | ••••• | ••••• | | •• | | 7 | | | | | | | | | ••••••• | ••••• | •••••• | • • • • • • • • • • • • • • • • • • • • | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ## **Additional Page** | If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. | |---------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | $\mathcal{O}_{\mathbf{r}}$ | | | | 10) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ** | | | | | | | $294.\ 9709_w19_qp_33\ Q:\ 9$ | The variables x and t satisfy the differential equation 5 | $5\frac{\mathrm{d}x}{\mathrm{d}t} = (20 - x)(40 - x).$ | It is given that $x = 10$ | |---------------------------------------------------------------|--------------------------------------------------------|---------------------------| | when $t = 0$. | ai | | | (i) | Using partial fractions, solve the differential equation, obtaining an expression for x in terms of t . [9] | |-----|-----------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *** | | | | | | | | | | | | | | | | | | | ## CHAPTER 8. DIFFERENTIAL EQUATIONS | ::/ | State what happens to the value of x when t becomes large. [1] | |-----|--------------------------------------------------------------------| | 11) | ••• | | | | | | | | | | | | | | | | 295. 9709_m18_qp_32 Q: 6 The variables x and θ satisfy the differential equation $$x\cos^2\theta\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\tan\theta + 1,$$ for $0 \le \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 1 when $\theta = \frac{1}{4}\pi$. | Show that $\frac{d}{d\theta}(\tan^2 \theta) = \frac{2 \tan \theta}{\cos^2 \theta}$. | [1] | |--------------------------------------------------------------------------------------|---------------------------------------------------------------------| | | | | | | | | | | | 100 | | | | | | | | Solve the differential equation and calculate correct to 3 significant figures. | the value of x when $\theta = \frac{1}{3}\pi$, giving your answe | | | | | 100 | | | | | | | | | | | | | | | | | | | | In a certain chemical reaction the amount, x grams, of a substance is decreasing. The differential equation relating x and t, the time in seconds since the reaction started, is $$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx\sqrt{t},$$ where k is a positive constant. It is given that x = 100 at the start of the reaction. | Solve the differential equation, obtaining a relation between x , t and k . | [5 | |-----------------------------------------------------------------------------------|---------| | | | | | | | | | | | | | | <u></u> | | | | | | | | | | | | | | | | | | | | | | | | | | -70 | | | | | | | | | | | | | | | ** | | | *** | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | |-------|-----|---|---------|--------| | | | | | | | ••••• | | | •••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | •••••• | | | | | | | | | | | | | | | | | | . 0 | | | | | | | | | | | | | | ••••• | | | •••••• | | | | | | 4 | | | | | | | | | | | | | | | | | 4 | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | ~ | | | | ••••• | 100 | | ••••• | •••••• | | | | | | | | | | | | | | 40 | | | | | | 44 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 297. 9709_s18_qp_32 Q: 3 In the diagram, the tangent to a curve at the point P with coordinates (x, y) meets the x-axis at T. The point N is the foot of the perpendicular from P to the x-axis. The curve is such that, for all values of x, the gradient of the curve is positive and TN = 2. | (i) | Show that the differential equation satisfied by x and y is $\frac{dy}{dx} = \frac{1}{2}y$. | 1 | |-----|-------------------------------------------------------------------------------------------------------|-----| | | | | | | | | | | | | | | | ••• | | | | | | | | ••• | | The | point with coordinates (4, 3) lies on the curve. | | | | | | | | Solve the differential equation to obtain the equation of the curve, expressing y in terms of x . | 5 | | | Solve the differential equation to obtain the equation of the curve, expressing y in terms of x . | 5 | | | Solve the differential equation to obtain the equation of the curve, expressing y in terms of x . | 5 | | | Solve the differential equation to obtain the equation of the curve, expressing y in terms of x . | 5 | | | Solve the differential equation to obtain the equation of the curve, expressing y in terms of x . | | | | Solve the differential equation to obtain the equation of the curve, expressing y in terms of x . | 5 | 298. 9709_s18_qp_33 Q: 6 | (i) | Express $\frac{1}{4-y^2}$ in partial fractions. | [2] | |------|---------------------------------------------------------------------------------------|---------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0 | | | | | | | | 少 | | | | | | | | | | | | | | (ii) | The variables x and y satisfy the differential equation | | | | $x\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - y^2,$ | | | | and $y = 1$ when $x = 1$. Solve the differential equation, obtaining an expression f | for y in terms of x . | | | | [6] | | | | | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | •••••• | | | | | | | | | | | | | | | | | | | 2018 9709/33/M/J/18 | | ## CHAPTER 8. DIFFERENTIAL EQUATIONS | 40 | |----| | | | | | | | | | | | | | | | | | | | | | | | | | | | | $299.\ 9709_w18_qp_31\ \ Q:\ 5$ | The coordinates (x, y) of a general point on a curve satisfies | tisfy the differential equation | |------------------------------------------------------------------|---------------------------------| | $x\frac{\mathrm{d}y}{\mathrm{d}x} = (2 - x^2)y$ | y. | $$x\frac{\mathrm{d}y}{\mathrm{d}x} = (2 - x^2)y.$$ | The curve passes through the point $(1, 1)$. Find the equation of the curve, obtaining an expression y in terms of x . | on for
[7] | |---|---------------------------------------| | | | | | ••••• | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | ## CHAPTER 8. DIFFERENTIAL EQUATIONS $300.\ 9709_w18_qp_32\ Q:\ 6$ | A certain curve is such that its gradient at a general point with coordinates (x, y) is proportional to v^2 | |---| | $\frac{y^2}{x}$. The curve passes through the points with coordinates (1, 1) and (e, 2). By setting up and solving | | a differential equation, find the equation of the curve, expressing y in terms of x . [8] | A'O' | ## CHAPTER 8. DIFFERENTIAL EQUATIONS | ••• | |-----| | | | | | | | | $301.\ 9709_s17_qp_31\ \ Q:\ 9$ | Express $\frac{1}{x(2x+3)}$ in partial fractions. | 2] | |--|----| | | | | | | | | •• | 40" | | | | | | | | | | | | 70 | •• | | The variables x and y satisfy the differential equation | | | $x(2x+3)\frac{\mathrm{d}y}{\mathrm{d}x}=y,$ | | | and it is given that $y = 1$ when $x = 1$. Solve the differential equation and calculate the value of when $x = 9$, giving your answer correct to 3 significant figures. | | | | | | | | | ** | | | | •• | $302.\ 9709_s17_qp_32\ Q:\ 5$ | In a certain chemical process a substance A reacts with and reduces a substance B . | The masses of A | |---|--| | and B at time t after the start of the process are x and y respectively. It is given that | $\frac{\mathrm{d}y}{\mathrm{d}t} = -0.2xy$ and | | $x = \frac{10}{(1+t)^2}$. At the beginning of the process $y = 100$. | | | | A () | | |-----|-------|--| *** | ii) | Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. | ie
2] | |-----|--|--------------| | ii) | Find the exact value approached by the mass of B as t becomes large. State what happens to th mass of A as t becomes large. | ne
2]
 | | ii) | Find the exact value approached by the mass of B as t becomes large. State what happens to th mass of A as t becomes large. | ne
2]
 | | ii) | Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2 | ne
2]
 | | ii) | Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. |
 | | ii) | Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2 | | | ii) | Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2 | | | ii) | Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2 | | | ii) | Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2 | | | ii) | Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happens to th mass of <i>A</i> as <i>t</i> becomes large. [2 | | 304. 9709_w17_qp_31 Q: 6 | | The variables x and | d v satisfy | the differential | equation | |--|---------------------|-------------|------------------|----------| |--|---------------------|-------------|------------------|----------| | $\frac{\mathrm{d}y}{\mathrm{d}x}$ | $= 4\cos^2 y \tan x,$ | |-----------------------------------|-----------------------| | dx | • | | for $0 \le x < \frac{1}{2}\pi$, and $x = 0$ when $y = \frac{1}{4}\pi$. Solve this differential equation and find the value of x when $y = \frac{1}{3}\pi$. | |---| | | | | | | | | | | | | | <u></u> | | | | | | 4.0 | | | | | | | | | | | | 20 | 305. 9709_w17_qp_32 Q: 5 | The week ables | | . aatiafr | the differential | aanatian | |----------------|---------|-----------|------------------|----------| | The variables | x and y | v sansiv | ine differential | eananon | | | | | | | | $(x+1)\frac{\mathrm{d}y}{\mathrm{d}x} = y(x+2)$ | , | |---|---| |---|---| | and it is given that $y = 2$ when $x = 1$. Solve the differential equation and obtain an expression for y terms of x . | in
7] | |---|-----------| | | | | | ••• | | | ••• | | | ••• | | | ••• | | | | | | | | | | | | | | | ••• | | | | | | | | | | | | ••• | | | , | | | ••• | | | ••• | | | ••• | | | ••• | | | ••• | | | ••• | | | ••• | | | , | | | | | •• * | |------| $306.\ 9709_m16_qp_32\ Q{:}\ 7$ The variables x and y satisfy the differential equation $$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^{x+y},$$ and it is given that y = 0 when x = 0. - (i) Solve the differential equation and obtain an expression for y in terms of x. [7] - (ii) Explain briefly why x can only take values less than 1. [1] $307.\ 9709_s16_qp_31\ \ Q:\ 4$ The variables x and y satisfy the differential equation $$x\frac{\mathrm{d}y}{\mathrm{d}x} = y(1 - 2x^2),$$ and it is given that y = 2 when x = 1. Solve the differential equation and obtain an expression for y in terms of x in a form not involving logarithms. [6] $308.\ 9709_s16_qp_32\ \ Q:\ 6$ The variables x and θ satisfy the differential equation $$(3 + \cos 2\theta) \frac{\mathrm{d}x}{\mathrm{d}\theta} = x \sin 2\theta,$$ and it is given that x = 3 when $\theta = \frac{1}{4}\pi$. - (i) Solve the differential equation and obtain an expression for x in terms of θ . [7] - (ii) State the least value taken by x. [1] 309. 9709_s16_qp_33 Q: 5 The variables x and y satisfy the differential equation $$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-2y} \tan^2 x,$$ for $0 \le x < \frac{1}{2}\pi$, and it is given that y = 0 when x = 0. Solve the differential equation and calculate the value of y when $x = \frac{1}{4}\pi$. 310. 9709_w16_qp_31 Q: 10 A large field of area 4 km^2 is becoming infected with a soil disease. At time t years the area infected is $x \text{ km}^2$ and the rate of growth of the infected area is given by the differential equation $\frac{dx}{dt} = kx(4-x)$, where k is a positive constant. It is given that when t = 0, x = 0.4 and that when t = 2, x = 2. - (i) Solve the differential equation and show that $k = \frac{1}{4} \ln 3$. [9] - (ii) Find the value of t when 90% of the area of the field is infected. [2] 311. 9709_w16_qp_33 Q: 5 The diagram shows a variable point P with coordinates (x, y) and the point N which is the foot of the perpendicular from P to the x-axis. P moves on a curve such that, for all $x \ge 0$, the gradient of the curve is equal in value to the area of the triangle *OPN*, where *O* is the origin. (i) State a differential equation satisfied by x and y. [1] The point with coordinates (0, 2) lies on the curve. Ralpa (ii) Solve the differential equation to obtain the equation of the curve, expressing y in terms of x. [5] (iii) Sketch the curve. [1] $312.\ 9709_s15_qp_31\ Q{:}\ 7$ Given that y = 1 when x = 0, solve the differential equation $$\frac{dy}{dx} = 4x(3y^2 + 10y + 3),$$ obtaining an expression for y in terms of x. [9] $$313.\ 9709_s15_qp_32\ Q:\ 9$$ The number of organisms in a population at time t is denoted by x. Treating x as a continuous variable, the differential equation satisfied by x and t is $$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x\mathrm{e}^{-t}}{k + \mathrm{e}^{-t}} \,,$$ where k is a positive constant. - (i) Given that x = 10 when t = 0, solve the differential equation, obtaining a relation between x, k and t. - (ii) Given also that x = 20 when t = 1, show that $k = 1 \frac{2}{e}$. [2] - (iii) Show that the number of organisms never reaches 48, however large t becomes. [2] $314.\ 9709_s15_qp_33\ Q{:}\ 7$ The number of micro-organisms in a population at time t is denoted by M. At any time the variation in M is assumed to satisfy the differential equation $$\frac{\mathrm{d}M}{\mathrm{d}t} = k(\sqrt{M})\cos(0.02t),$$ where k is a constant and M is taken to be a continuous variable. It is given that when t = 0, M = 100. - (i) Solve the differential equation, obtaining a relation between M, k and t. [5] - (ii) Given also that M = 196 when t = 50, find the value of k. [2] - (iii) Obtain an expression for M in terms of t and find the least possible number of micro-organisms. $315.\ 9709_w15_qp_31\ Q:\ 8$ The variables x and θ satisfy the differential equation $$\frac{\mathrm{d}x}{\mathrm{d}\theta} = (x+2)\sin^2 2\theta,$$ and it is given that x = 0 when $\theta = 0$. Solve the differential equation and calculate the value of x when $\theta = \frac{1}{4}\pi$, giving your answer correct to 3 significant figures. [9] 316.9709 w15 qp 33 Q: 10 Naturalists are managing a wildlife reserve to increase the number of plants of a rare species. The number of plants at time t years is denoted by N, where N is treated as a continuous variable. - (i) It is given that the rate of increase of N with respect to t is proportional to (N-150). Write down a differential equation relating N, t and a constant of proportionality. [1] - (ii) Initially, when t = 0, the number of plants was 650. It was noted that, at a time when there were 900 plants, the number of plants was increasing at a rate of 60 per year. Express N in terms of t. - (iii) The naturalists had a target of increasing the number of plants from 650 to 2000 within 15 years. Will this target be met? [2]